Effect of electrode's mass on the electrochemical properties of Ni₃(HITP)₂ supercapacitors fabricated by electrophoretic deposition

*Darien K. Nguyen and Fatima Amir Research Associate, Assistant Professor Winthrop University

Presentation keywords: Supercapacitors, MOFs, Ni₃(HITP)₂

Abstract: Metal-organic frameworks are 2D materials that are of significant interest because of their promising applications in energy storage devices. Herein, we report the fabrication of the MOF Nickel-2,3,6,7,10,11-Hexaaminotriphenylene (Ni₃(HITP)₂) supercapacitors by electrophoretic deposition (EPD). The Ni₃(HITP)₂ were deposited onto targeted substrates, with masses ranging between 0.35mg and 1.75 mg. The resulting Ni₃(HITP)₂ exhibited excellent electrochemical capacitive performance over a potential window of 0.0-1.0V, operating at ultrahigh charge-discharge rates, up to 4000 mV s⁻¹. The Ni₃(HITP)₂ supercapacitors exhibited excellent areal specific capacitance of 15.69mFcm⁻² and 63.54mFcm⁻² for masses of 0.35mg and 1.75mg respectively. The Ni₃(HITP)₂ supercapacitors exhibited an exceptional ultra-long cycling stability after 100,000 cycles. The results pave a promising route for the next–generation of electric double layers capacitors (EDLCs) based on non-carbon active materials.